Common software lifecycle management in external

projects

C. Duma', A. Costantini', D. Michelotto!, P. Orviz? and D.
Salomoni!

NINFN Division CNAF, Bologna, Italy
2JFCA, Consejo Superior de Investigaciones Cientificas-CSIC, Santander, Spain

E-mail: ds@cnaf.infn.it

Abstract.

This paper describes the common procedure defined and adopted in the field of software
lifecycle management, the Continuous Integration and Delivery systems setup to manage the new
releases, as a first step to ensure the quality of the provided solutions, services or components,
while strengthening the collaboration between developers and operations teams among different
external projects. In paricular, the papaer analyses the common software lifecycle management
procedure adoped in two EC funded

project: eXtreme DataCloud and DEEP Hybrid DataCloud.

1. Introduction

A relevant activity in the software-oriented projects is the definition and implementation of the
entire Software Lifecycle Management process. As the software components envisaged by the
project have a history of development in previous successful European projects implementing
different types of modern software development techniques, the natural choice was to complement
the previous, individual, Continuous Development and Integration services with a Continuous
Testing, Deployment and Monitoring as part of a DevOps approach:

e Continuous Testing - the activity of continuously testing the developed software in order to
identify issues in the early phases of the development. For Continuous testing, automation
tools will be used. These tools enable the QA’s for testing multiple code-bases and in
parallel, to ensure that there are no flaws in the functionality. In this activity the use of
Docker containers for simulating testing environments on the fly, is also a preferred choice.
Once the code is tested, it is continuously integrated with the existing code.

Continuous Deployment - the activity of continuously updating production environment
once new code is made available. Here we ensure that the code is correctly deployed on
all the servers. If there is any addition of functionality or a new feature is introduced,
then one should be ready to add resources according to needs. Therefore, it is also the
responsibility of the SysAdmin to scale up the servers. Since the new code is deployed on
a continuous basis, automation tools play an important role for executing tasks quickly
and frequently. Puppet, Chef, SaltStack and Ansible are some popular tools that could be
used at this step. This activity represents the Configuration Management - the process of
standardising the resources configurations and enforcing their state across infrastructures

in an automated manner. The extensive use of Containerisation techniques will provide an
entire runtime environment: application/service, all its dependencies, libraries and binaries,
and configuration files needed to run it, bundled in one package - container. T3.1 will
also manage the scalability testing, being able to manage the configurations and do the
deployments of any number of nodes automatically.

Continuous Monitoring - very crucial activity in the DevOps model of managing software
lifecycle, which is aimed at improving the quality of the software by monitoring its
performance. This practice involves the participation of the Operations team who will
monitor the users’ activity to discover bugs or improper behaviour of the system. This
can also be achieved by making use of dedicated monitoring tools, which will continuously
monitor the application performance and highlight issues. Some popular tools useful in this
step are Nagios, NewRelic and Sensu. These tools help to monitor the health of the system
proactively and improve productivity and increase the reliability of the systems, reducing
IT support costs. Any major issues found could be reported to the Development team to
be fixed in the continuous development phase.

These DevOps activities are carried out on loop continuously until the desired product quality
is achieved. Automation will play a central role in all the activities in order to achieve a complete
release automation, moving the software from the developers through build and quality assurance
checks, to deployment into integration testbeds and finally to production sites part of the Pilot
Infrastructures.

2. Software Quality Assurance and Control

Software Quality Assurance (SQA) covers the set of software engineering processes that foster
the quality and reliability in the software produced. The activities involved in this task are
mainly focused on:

Defining and maintaining a common SQA procedure to guide the software development
efforts throughout its life cycle.

Formulating a representative set of metrics for the software quality control to follow up on
the behaviour of the software produced, aiming to detect and fix early deviations in the
software produced.

Enabling a continuous integration process, eventually complemented by a continuous
delivery scenario, promoting the automation adoption for the testing, building, deployment
and release activities.

In order to define the SQA process, the specific context of the software developed in the
project has to be taken into account. The following particularities characterise the corresponding
development teams:

Heterogeneous developer profiles: different backgrounds and different degrees of expertise.
Geographically distributed.

Different home institutes which implies different cultures, different development
technologies, process and methods.

High turnover due to the limited duration of the projects where the grid software has been
developed so far.

More focus on development activities, with limited resources, if any, available for quality
assurance activities.

The Quality Assurance process has to take all these factors into account to define the Software
Quality Assurance Plan (SQAP). A set of 7QA Policies” have also to be defined to guide the

development teams towards uniform practices and processes. These QA Policies define the main
activities of the software lifecycle, such as releasing, tracking, packaging and documenting the
software carried out by the project. This is done in collaboration with development teams,
making sure they are flexible enough to co-exist as much as possible with current development
methods. The SQA activities have to be monitored and controlled to track their evolution and
put in place corrective countermeasures in case of deviations.

Finally, in order to measure and evaluate the quality of the software, a quality model have
to be defined to help in evaluating the software products and process quality. It helps to set
quality goals for software products and processes. The Quality Model has to follow the ISO/IEC
25010:2011 “Systems and software engineering - Systems and software Quality Requirements
and Evaluation (SQuaRE) - System and software quality models” [R18] to identify a set of
characteristics that need to be present in software products and processes to be able to meet
the quality requirements.

3. Software Maintenance and Support
Regarding the software maintenance and support area of the software lifecycle management the
main objectives covered by the project are:

e To increase the quality levels of the software by contributing to the implementation and
automation of the Quality Assurance (QA) and Control procedures defined by the project.

e To boost the software delivery process, relying on automation.

e To emphasize the communication and feedback with/from end users, in order to guarantee
adequate requirements gathering and support.

e To guarantee the stability of services already deployed in production and the increase of
their readiness levels, where needed.

Moreover the common practices deal with the definition of all processes and procedures regarding
the software maintenance and support, and their continuous execution:

e Software Maintenance - regarding software preparation & transition from the developers to
production repositories and final users.

e Problem Management - providing the analysis & documentation of problems.
e Change Management - control code, configuration changes, retirement calendars.
e Coordination the provisioning of adequate support to released software.

e Responsible for the release management and coordination and the maintenance of the
artefacts repositories, defining policies and release cycles.

The plan regarding the software maintenance and support management have to follow the
guidelines of the ISO/IEC 14764:2006 standard [R30], and includes a set of organizational
roles and administrative roles to handle maintenance implementation, change management
and validation, software release, migration and retirement, support and helpdesk activities.
Component releases are classified in major, minor, revision and emergency, based on the impact
of the changes on the component interface and behaviour. Requests for Change (RfC) are
managed adopting a priority-driven approach, so that the risk of compromising the stability
of the software deployed in a production environment is minimized. The User Support activity
deals with the coordination of the support, to users of the software components developed within
the project and included in the main project software distributions.

4. Services for continuous integration and SQA

A set of tools and services are needed to support the PTs, the Software Quality Assurance, the
Continuous Integration and the software release and maintenance. The choice of using publicly
available cloud services has three main reasons:

e Higher public visibility and in line with project objectives for open source software

e Provides a path to further development, support and exploitation beyond the end of the
project.

e Smaller effort needed inside the project to operate and manage those services.

The list of services needed is given below with a small description for each service and the Web
link.

Service Description

Project lssue Dashboard Jira as izsue tracking product and
project management tocl. R provides
bug tracking, issue tracking, and

project management functions.

. ; Confluence as collaborative tool i
ware/cenfluence provides collaboration workspaces for
knowledge exchange, social
networking, persenal information
management and project management.

Project Management/Wiki

Project Documentation | hitps:inexteloud. com! Repository for easy decument sharing
Repository
Events Management hitps-/igetindico. o Open source tool for event

organization

Source code repository and | https:/igithub.com GitHub iz a Version Control System.
version control

Continuous Integration https:ifjenkins-ci.org Jenkins for the: Continuous
Integration service. & wil deploy,
manage and support a Jenking server
to execute automatically most of the
S0A tests. The code review and the
documentation checking tems are not

automated.
Artefacts repository for DockerHub organizations and
docker images repositories
Automatic deployment and Deployment and configuration
configuration managementtuu|

GitHub Pull Reguests (PR} Service for source code review

about-pull-reguests/

5. DevOps adoption from user communities

6. Conclusions

The experience gathered throughout the project with regards to the adoption of different DevOps
practices is not only useful and suitable for the software related to the core services in the
INDIGO-DataCloud solution, but also applicable to the development and distribution of the
applications coming from the user communities.

Acknowledgments

DEEP-HybridDataCloud has been funded by the European Commision H2020 research and
innovation program under grant agreement RIA XXXXXXX. eXtreme DataCloud has been
funded by the European Commision H2020 research and innovation program under grant
agreement RIA XXXXXXX.

