
Common software lifecycle management in external

projects

C. Duma1, A. Costantini1, D. Michelotto1, P. Orviz2 and D.
Salomoni1

1INFN Division CNAF, Bologna, Italy
2IFCA, Consejo Superior de Investigaciones Cientificas-CSIC, Santander, Spain

E-mail: ds@cnaf.infn.it

Abstract.
This paper describes the common procedure defined and adopted in the field of Software

Lifecycle Management and Continuous Integration and Delivery to manage the new releases,
as a first step to ensure the quality of the provided solutions, services and components,
while strengthening the collaboration between developers and operations teams among different
external projects. In particular, the paper analyses the common software lifecycle management
procedure developed during the INDIO-DataCloud project and recently improved and adopted
in two EC funded projects: eXtreme DataCloud and DEEP Hybrid DataCloud.

1. Introduction
The eXtreme-DataCloud (XDC) [1] and DEEP-HybridDataCloud (DEEP-HDC) [2] projects are
aimed at addressing requirements from a wide range of User Communities belonging to several
disciplines and test the developed software solutions against the real life use cases. The software
solutions carried out by the both projects are released as Open Source and are based on already
existing components (TRL8+) that the projects will enrich with new functionalities and plugins.

The use of standards and protocols widely available on the state-of-the-art distributed
computing ecosystems may be not enough to guarantee that the released components
can be easily plugged into the European e-Infrastructures and in general on cloud based
computing environments and the definition and implementation of the entire Software Lifecycle
Management process becames mandatory in such projects.

As the software components envisaged by both projects have a history of development
in previous successful European projects (such as the INDIGO-DataCloud [3] project)
implementing different types of modern software development techniques, the natural choice
was to complement the previous, individual, Continuous Development and Integration services
with a Continuous Testing, Deployment and Monitoring as part of a DevOps approach:

• Continuous Testing - the activity of continuously testing the developed software in order to
identify issues in the early phases of the development. For Continuous testing, automation
tools will be used. These tools enable the QA’s for testing multiple code-bases and in
parallel, to ensure that there are no flaws in the functionality. In this activity the use of
Docker containers for simulating testing environments on the fly, is also a preferred choice.
Once the code is tested, it is continuously integrated with the existing code.



• Continuous Deployment - the activity of continuously updating production environment
once new code is made available. Here we ensure that the code is correctly deployed on
all the servers. If there is any addition of functionality or a new feature is introduced,
then one should be ready to add resources according to needs. Therefore, it is also the
responsibility of the SysAdmin to scale up the servers. Since the new code is deployed on
a continuous basis, automation tools play an important role for executing tasks quickly
and frequently. Puppet, Chef, SaltStack and Ansible are some popular tools that could be
used at this step. This activity represents the Configuration Management - the process of
standardising the resources configurations and enforcing their state across infrastructures
in an automated manner. The extensive use of containerisation techniques will provide an
entire runtime environment: application/service, all its dependencies, libraries and binaries,
and configuration files needed to run it, bundled in one package - container. T3.1 will
also manage the scalability testing, being able to manage the configurations and do the
deployments of any number of nodes automatically.

• Continuous Monitoring - very crucial activity in the DevOps model of managing software
lifecycle, which is aimed at improving the quality of the software by monitoring its
performance. This practice involves the participation of the Operations team who will
monitor the users’ activity to discover bugs or improper behavior of the system. This
can also be achieved by making use of dedicated monitoring tools, which will continuously
monitor the application performance and highlight issues. Some popular tools useful in this
step are Nagios [4], NewRelic [5] and Sensu [6]. These tools help to monitor the health of
the system proactively and improve productivity and increase the reliability of the systems,
reducing IT support costs. Any major issues found could be reported to the Development
team to be fixed in the continuous development phase.

These DevOps activities are carried out on loop continuously until the desired product quality
is achieved. Automation will play a central role in all the activities in order to achieve a complete
release automation, moving the software from the developers through build and quality assurance
checks, to deployment into integration testbeds and finally to production sites part of the Pilot
Infrastructures. In the following sections, an overview of the recentli defined best practices
that have been adopted in both XDC and DEEP-XDC projects for the Software Lifecycle
Management and Continuous Integration and Delivery are presented and described.

2. Software Quality Assurance and Control
Software Quality Assurance (SQA) covers the set of software engineering processes that foster
the quality and reliability in the software produced. The activities involved in this task are
mainly focused on:

• Defining and maintaining a common SQA procedure to guide the software development
efforts throughout its life cycle.

• Formulating a representative set of metrics for the software quality control to follow up
on the behavior of the software produced, aiming to detect and fix early deviations in the
software produced.

• Enabling a continuous integration process, eventually complemented by a continuous
delivery scenario, promoting the automation adoption for the testing, building, deployment
and release activities.

In order to define the SQA process, the specific context of the software developed in the
project has to be taken into account. The following particularities characterize the corresponding
development teams:

• Heterogeneous developer profiles: different backgrounds and different degrees of expertise.



• Geographically distributed.

• Different home institutes which implies different cultures, different development
technologies, process and methods.

• High turnover due to the limited duration of the projects where the grid software has been
developed so far.

• More focus on development activities, with limited resources, if any, available for quality
assurance activities.

The Quality Assurance process has to take all above described factors into account to
define the Software Quality Assurance Plan (SQAP). A set of ”QA Policies” have also to be
defined to guide the development teams towards uniform practices and processes. These QA
Policies define the main activities of the software lifecycle, such as releasing, tracking, packaging
and documenting the software carried out by the project. This is done in collaboration with
development teams, making sure they are flexible enough to co-exist as much as possible with
current development methods. The SQA activities have to be monitored and controlled to track
their evolution and put in place corrective countermeasures in case of deviations.

Moreover, a quality model have to be defined to help in evaluating the software products and
process quality. It helps to set quality goals for software products and processes. The Quality
Model has to follow the ISO/IEC 25010:2011 “Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and software quality models”
[7] to identify a set of characteristics (criteria) that need to be present in software products and
processes to be able to meet the quality requirements.

Those SQA criteria ?? have the goal to

• Enhance the visibility, accessibility and distribution of the produced source code through
the alignment with to the Open Source Definition [9].

• Promote code style standards to deliver good quality source code emphasizing its readability
and reusability.

• Improve the quality and reliability of software by covering different testing methods at
development and pre-production stages.

• Propose a change-based driven scenario where all new updates in the source code are
continuously evaluated by the automated execution of the relevant tests.

• Adopt an agile approach to effectively produce timely and audience-specific documentation.

• Lower the barriers of software adoption by delivering quality documentation and the
utilization of automated deployment solutions.

• Encourage secure coding practices and security static analysis at the development phase
while providing recommendations on external security assessment.

3. Software Maintenance and Support
Regarding the software maintenance and support area of the software lifecycle management, the
main objectives that should be and described in the Maintenance plan are:

• To increase the quality levels of the software by contributing to the implementation and
automation of the Quality Assurance (QA) and Control procedures defined by the project.

• To boost the software delivery process, relying on automation.

• To emphasize the communication and feedback with/from end users, in order to guarantee
adequate requirements gathering and support.

• To guarantee the stability of services already deployed in production and the increase of
their readiness levels, where needed.



Moreover the common practices deal with the definition of those processes and procedures related
to the software maintenance and support and their continuous execution:

• Software Maintenance - regarding software preparation & transition from the developers to
production repositories and final users.

• Problem Management - providing the analysis & documentation of problems.

• Change Management - control code, configuration changes, retirement calendars.

• Coordination the provisioning of adequate support to released software.

• Responsible for the release management and coordination and the maintenance of the
artifacts repositories, defining policies and release cycles.

The plan regarding the software maintenance and support management have to follow the
guidelines of the ISO/IEC 14764:2006 standard [10], and includes a set of organizational and
administrative roles to handle maintenance implementation, change management and validation,
software release, migration and retirement, support and helpdesk activities. Component releases
are classified in major, minor, revision and emergency, based on the impact of the changes on
the component interface and behavior. Requests for Change (RfC) are managed adopting a
priority-driven approach, so that the risk of compromising the stability of the software deployed
in a production environment is minimized. The User Support activity deals, instead, with the
coordination of the support to the users that make use of the software components (developed
within the project activities) and included in the main project software distributions.

4. Services for continuous integration and SQA
To support the Software Quality Assurance, the Continuous Integration and the software release
and maintenance activities, a set of tools and services are needed. Usually, those tools and
services are provided by using publicly available cloud services due to the following reasons:

• Higher public visibility and in line with project objectives for open source software,

• Provides a path to further development, support and exploitation beyond the end of the
project,

• Smaller effort needed inside the project to operate and manage those services.

The list of services needed is given in Table 1 with a small description for each service and the
related Web link.

5. Key Performance Indicators
Defining appropriate KPIs for maintenance, release and support activities, and monitor them
during the project lifetime may help in highlight the project achievements and put in place the
appropriate corrective actions in case of deviations. In principle, the KPIs should address the
following impact areas and reflect the related goal:

• Prepare data and computing e-Infrastructures to absorb the needs of communities that push
the envelope in terms of data and intensive computing

– Goal: Extending the quality & quantity of services provided by e-infrastructures

• Promote new research possibilities in Europe

– Goal: Increasing the capacity for innovation and production of new knowledge



Table 1: Tools and services to support DevOps.

6. Conclusions
The paper describes the common procedures to be applied in the field of software lifecycle
management, aimed at managing the new releases and ensure the quality of the provided
solutions, services and components provided by the project. In particular, the paper described
the best practices to adopt in order to i) foster the quality and reliability of the software
produced, ii) to define the processes and procedures regarding the software maintenance and
support, iii) identify the services needed to support the Software Quality Assurance, the
Continuous Integration and the software release and maintenance and iv) define appropriate
KPIs to monitor the project achievements.

The experience gathered throughout this activity with regards to
The adoption of different DevOps practices is becaming mandatory for software development

projects, the experience gathered throughout this activity can be also applicable to the
development and distribution of software products coming, for example, from the user
communities and other software product activities.

Acknowledgments
DEEP-HybridDataCloud has been funded by the European Commission H2020 research and
innovation program under grant agreement RIA 777435. eXtreme DataCloud has been funded
by the European Commission H2020 research and innovation program under grant agreement
RIA 777367.

7. References
[1] Web site: www.extreme-datacloud.eu



[2] Web site: www.deep-hybrid-datacloud.eu
[3] Web site: www.indigo-datacloud.eu
[4] Web site: https://www.nagios.org
[5] Web site: https://newrelic.com
[6] Web site: https://sensu.io
[7] ISO/IEC 25010:2011, “Systems and software engineering - Systems and software Quality Requirements and

Evaluation (SQuaRE) - System and software quality models”: https://www.iso.org/standard/35733.html
[8] A set of Common Software Quality Assurance Baseline Criteria for Research Projects,

http://digital.csic.es/bitstream/10261/160086/4/CommonSQA-v2.pdf
[9] The Open Source Definition, https://opensource.org/osd
[10] ISO/IEC 14764:2006 standard, https://www.iso.org/standard/39064.html


