Skip to content
Snippets Groups Projects
Commit af6d5e1f authored by Lucia Morganti's avatar Lucia Morganti
Browse files

Update lhcf.tex

parent 26f4e241
No related branches found
No related tags found
No related merge requests found
Pipeline #23483 passed
...@@ -21,7 +21,7 @@ The LHCf experiment is dedicated to the measurement of very forward particle pro ...@@ -21,7 +21,7 @@ The LHCf experiment is dedicated to the measurement of very forward particle pro
Since 2009 the LHCf detector has taken data in different configurations of the LHC: p-p collisions at center of mass energies of 900\,GeV, 2.76\,TeV, 7\,TeV and 13\,TeV, and p-Pb collisions at $\sqrt{s_{NN}}\,=\,5.02$\,TeV and 8.16\,TeV. The main results obtained in 2018 is shortly presented in the next paragraphs. Since 2009 the LHCf detector has taken data in different configurations of the LHC: p-p collisions at center of mass energies of 900\,GeV, 2.76\,TeV, 7\,TeV and 13\,TeV, and p-Pb collisions at $\sqrt{s_{NN}}\,=\,5.02$\,TeV and 8.16\,TeV. The main results obtained in 2018 is shortly presented in the next paragraphs.
\section{The LHCf detector} \section{The LHCf detector}
The LHCf detector is made of two independent electromagnetic calorimeters placed along the beam line at 140\,m on both sides of the ATLAS Interaction Point, IP1 \cite{LHCf_experiment, LHCf_detector}. Each of the two detectors, called Arm1 and Arm2, contains two separate calorimeter towers allowing to optimize the reconstruction of neutral pion events decaying into couples of gamma rays. During data taking the LHCf detectors are installed in the so called \"recombination chambers\", a place where the beam pipe of IP1 splits into two separate pipes, thus allowing small detectors to be inserted just on the interaction line (this position is shared with the ATLAS ZDC e.m. modules). For this reason the size of the calorimeter towers is very limited (few centimeters). Because of the performance needed to study very high energy particles with the requested precision to allow discriminating between different hadronic interaction models, careful simulations of particle collisions and detector’s response are mandatory. In particular, due to the tiny transversal size of the detectors, large effects are observed due to e.m. shower leackage in and out of the calorimeter towers. Most of the simulations produced by the LHCf Collaboration for the study and calibration of the Arm2 detector have been run exploiting the resources made available at CNAF. The LHCf detector is made of two independent electromagnetic calorimeters placed along the beam line at 140\,m on both sides of the ATLAS Interaction Point, IP1 \cite{LHCf_experiment, LHCf_detector}. Each of the two detectors, called Arm1 and Arm2, contains two separate calorimeter towers allowing to optimize the reconstruction of neutral pion events decaying into couples of gamma rays. During data taking the LHCf detectors are installed in the so called ``recombination chambers'', a place where the beam pipe of IP1 splits into two separate pipes, thus allowing small detectors to be inserted just on the interaction line (this position is shared with the ATLAS ZDC e.m. modules). For this reason the size of the calorimeter towers is very limited (few centimeters). Because of the performance needed to study very high energy particles with the requested precision to allow discriminating between different hadronic interaction models, careful simulations of particle collisions and detector’s response are mandatory. In particular, due to the tiny transversal size of the detectors, large effects are observed due to e.m. shower leackage in and out of the calorimeter towers. Most of the simulations produced by the LHCf Collaboration for the study and calibration of the Arm2 detector have been run exploiting the resources made available at CNAF.
\section{Results obtained in 2018} \section{Results obtained in 2018}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment